Publications Publications

最小化 最大化
23.

Bipartite and tripartite output entanglement in 3-mode optomechanical systems
Ying-Dan Wang, Stefano Chesi and Aashish A. Clerk, arXiv:1406.7829 (2014)

22.

Reservoir-engineered entanglement in optomechanical systems
Ying-Dan Wang and Aashish A. Clerk, Phys. Rev. Lett. 110, 253601 (2013).

21.

Using dark modes for high fidelity optomechanical quantum state transfer
Ying-Dan Wang and Aashish A. Clerk, New. J. Phys. (Focus on Optomechanics) 14, 105010 (2012)

20.

Using interference for high fidelity quantum state transfer in optomechanics
Ying-Dan Wang and Aashish A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)

19.

Ideal quantum nondemolitionmeasurement of a flux qubit at variable bias
Ying-Dan Wang, Xiao-Bo Zhu, and Christoph Bruder, Phys. Rev. B 83 134504 (2011)

18.

 Nondeterminstic ultrafast ground state cooling of a mechanical resonator
Yong Li, Lian-Ao Wu, Ying-Dan Wang and Li-Ping Yang, Phys. Rev. B 84, 094502 (2011)

17.

Greenberger-Horne-Zeilinger generation protocol for N superconductingcharge qubits capacitively coupled to a quantum bus
S. Aldana, Ying-Dan Wang, and C. Bruder, Phys. Rev. B 84, 134519 (2011)

16.

One-step multi-qubit GHZ stategeneration in a circuit QED system
Ying-Dan Wang, Stefano Chesi, Daniel Loss, and C. Bruder, Phys. Rev. B 81, 104524 (2010) (“Editors’ Suggestion”)

15.

Cooling amicromechanical resonator by quantum back-action from a noisy qubit
Ying-Dan Wang, Yong Li, Fei Xue, C. Bruder, and K. Semba, Phys. Rev. B 80, 144508 (2009)

14.

Coupling superconducting flux qubits at optimal point via dynamic decoupling with thequantum bus
Ying-Dan Wang, A. Kemp and K. Semba, Phys. Rev. B 79 024502 (2009)

13.

Two Mode Photon Bunching Effect as Witness of Quantum Criticality in Circuit QED
Qing Ai, Ying-Dan Wang, Guilu Long, and C. P. Sun, Science in China Series G-Physics Mechanics Astron 52 1898 (2009)

12.

Cooling of a Micro-mechanical Resonator bythe Back-action of Lorentz Force
Ying-Dan Wang, K. Semba, H. Yamaguchi, New J. Phy. 10043015 (2008)

11.

Quantum Theory of Transmission Line Resonator-Assisted Cooling of a Micromechanical Resonator
Yong Li, Ying-Dan Wang, Fei Xue, C. Bruder, Phys. Rev. B 78, 134301 (2008)

10.

 Detectionmechanism for quantum phase transition in superconducting qubit array
Ying-Dan Wang, Fei Xue, Z. Song and C. P. Sun, Phys. Rev. B 76, 174519 (2007)

9.

Coolinga micromechanical beam by coupling it to a transmission line
F. Xue, Ying-Dan Wang, Yu-xi Liu and F. Nori, Phys. Rev. B 76, 205302 (2007)

8.

Controllablecoupling between flux qubit and nanomechanical resonator by magnetic field
F. Xue, Ying-Dan Wang, C. P. Sun, H. Okamoto, H. Yamaguchi, K. Semba, New J. Phys. 9, 35 (2007)

7.

Maxwell's Demon Assisted Thermodynamic Cycle in Superconducting Quantum Circuits
H. T. Quan, Ying-Dan Wang, Yu-xi Liu, C. P. Sun, and F. Nori. Phys. Rev. Lett. 97, 180402 (2006)

6.

Macroscopic Quantum Criticality in a Circuit QED
Ying-Dan Wang, H. T. Quan, Yu-xi Liu, C. P. Sun, and F. Nori, quant-ph/0601026

5.

Cooling Mechanism for a Nanomechanical Resonator by Periodic Coupling to a Cooper PairBox
P. Zhang, Ying-Dan Wang and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)

4.

Quantum storage and informationtransfer with superconducting qubits
Ying-Dan Wang, Z. D. Wang and C. P. Sun, Phys. Rev. B 72, 172507 (2005)

3.

Nonlinear mechanism of charge-qubit decoherence in a lossy cavity:Quasi-normal-mode approach
Y. B. Gao, Ying-Dan Wang, and C. P. Sun, Phys. Rev. A 71, 032302 (2005)

2.

Fastentanglement of two charge-phase qubits through nonadiabatic coupling to alarge Josephson junction
Ying-Dan Wang, P. Zhang, D.L. Zhou and C.P. Sun, Phys. Rev. B 70, 224515 (2004)

1. Engineering quantum decoherence of chargequbit via a nanomechanical resonator
Ying-Dan Wang, Y. B. Gao and C. P. Sun, Eur. Phys. J. B 40, 321 (2004).

Book Chapters

 

Fundamental concepts and methods in cavity QED (in Chinese)

 

C. P. Sun, Ying-Dan Wang, Y. Li and P. Zhang, Recent progresses in quantum mechanics (Vol. 3) (Tsinghua University Press, Beijing 2003).