Publications Publications

最小化 最大化

Bipartite and tripartite output entanglement in 3-mode optomechanical systems
Ying-Dan Wang, Stefano Chesi and Aashish A. Clerk, arXiv:1406.7829 (2014)


Reservoir-engineered entanglement in optomechanical systems
Ying-Dan Wang and Aashish A. Clerk, Phys. Rev. Lett. 110, 253601 (2013).


Using dark modes for high fidelity optomechanical quantum state transfer
Ying-Dan Wang and Aashish A. Clerk, New. J. Phys. (Focus on Optomechanics) 14, 105010 (2012)


Using interference for high fidelity quantum state transfer in optomechanics
Ying-Dan Wang and Aashish A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)


Ideal quantum nondemolitionmeasurement of a flux qubit at variable bias
Ying-Dan Wang, Xiao-Bo Zhu, and Christoph Bruder, Phys. Rev. B 83 134504 (2011)


 Nondeterminstic ultrafast ground state cooling of a mechanical resonator
Yong Li, Lian-Ao Wu, Ying-Dan Wang and Li-Ping Yang, Phys. Rev. B 84, 094502 (2011)


Greenberger-Horne-Zeilinger generation protocol for N superconductingcharge qubits capacitively coupled to a quantum bus
S. Aldana, Ying-Dan Wang, and C. Bruder, Phys. Rev. B 84, 134519 (2011)


One-step multi-qubit GHZ stategeneration in a circuit QED system
Ying-Dan Wang, Stefano Chesi, Daniel Loss, and C. Bruder, Phys. Rev. B 81, 104524 (2010) (“Editors’ Suggestion”)


Cooling amicromechanical resonator by quantum back-action from a noisy qubit
Ying-Dan Wang, Yong Li, Fei Xue, C. Bruder, and K. Semba, Phys. Rev. B 80, 144508 (2009)


Coupling superconducting flux qubits at optimal point via dynamic decoupling with thequantum bus
Ying-Dan Wang, A. Kemp and K. Semba, Phys. Rev. B 79 024502 (2009)


Two Mode Photon Bunching Effect as Witness of Quantum Criticality in Circuit QED
Qing Ai, Ying-Dan Wang, Guilu Long, and C. P. Sun, Science in China Series G-Physics Mechanics Astron 52 1898 (2009)


Cooling of a Micro-mechanical Resonator bythe Back-action of Lorentz Force
Ying-Dan Wang, K. Semba, H. Yamaguchi, New J. Phy. 10043015 (2008)


Quantum Theory of Transmission Line Resonator-Assisted Cooling of a Micromechanical Resonator
Yong Li, Ying-Dan Wang, Fei Xue, C. Bruder, Phys. Rev. B 78, 134301 (2008)


 Detectionmechanism for quantum phase transition in superconducting qubit array
Ying-Dan Wang, Fei Xue, Z. Song and C. P. Sun, Phys. Rev. B 76, 174519 (2007)


Coolinga micromechanical beam by coupling it to a transmission line
F. Xue, Ying-Dan Wang, Yu-xi Liu and F. Nori, Phys. Rev. B 76, 205302 (2007)


Controllablecoupling between flux qubit and nanomechanical resonator by magnetic field
F. Xue, Ying-Dan Wang, C. P. Sun, H. Okamoto, H. Yamaguchi, K. Semba, New J. Phys. 9, 35 (2007)


Maxwell's Demon Assisted Thermodynamic Cycle in Superconducting Quantum Circuits
H. T. Quan, Ying-Dan Wang, Yu-xi Liu, C. P. Sun, and F. Nori. Phys. Rev. Lett. 97, 180402 (2006)


Macroscopic Quantum Criticality in a Circuit QED
Ying-Dan Wang, H. T. Quan, Yu-xi Liu, C. P. Sun, and F. Nori, quant-ph/0601026


Cooling Mechanism for a Nanomechanical Resonator by Periodic Coupling to a Cooper PairBox
P. Zhang, Ying-Dan Wang and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005)


Quantum storage and informationtransfer with superconducting qubits
Ying-Dan Wang, Z. D. Wang and C. P. Sun, Phys. Rev. B 72, 172507 (2005)


Nonlinear mechanism of charge-qubit decoherence in a lossy cavity:Quasi-normal-mode approach
Y. B. Gao, Ying-Dan Wang, and C. P. Sun, Phys. Rev. A 71, 032302 (2005)


Fastentanglement of two charge-phase qubits through nonadiabatic coupling to alarge Josephson junction
Ying-Dan Wang, P. Zhang, D.L. Zhou and C.P. Sun, Phys. Rev. B 70, 224515 (2004)

1. Engineering quantum decoherence of chargequbit via a nanomechanical resonator
Ying-Dan Wang, Y. B. Gao and C. P. Sun, Eur. Phys. J. B 40, 321 (2004).

Book Chapters


Fundamental concepts and methods in cavity QED (in Chinese)


C. P. Sun, Ying-Dan Wang, Y. Li and P. Zhang, Recent progresses in quantum mechanics (Vol. 3) (Tsinghua University Press, Beijing 2003).